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experiment for the cross section for the electron ioniza
tion of atomic hydrogen. To get this agreement it is 
necessary to use an electron velocity distribution of the 
form (vo/vi)3e~vo}n-t since this distribution is very dif
ferent from the exact velocity distribution its use cannot 
be justified theoretically. However, this semiempirical 
procedure could partially be justified if it gave good 
results for other atomic systems. Unfortunately, this is 
not the case. For example, if we compare the cross 
sections obtained from Gryzinski's semiempirical 
formula with the Be the formulas14 for electron ionization 
of the states of hydrogen with principal quantum num
bers n=2, 3, and 4 we find that at high energies the 
semiempirical classical formula is in error by factors of 
2, 3, and 4, respectively. 

It is interesting to note in Table I that the two 
classical cross sections obtained by replacing V by 
(v^+v^)112 tend to agree quite closely with the experi
mental cross section at low energies. Since the result of 
this approximation is to eliminate collisions with long 
interaction times it has been suggested2 that since it has 
the same effect as the inclusion of the atomic nucleus it 

14 H. Bethe, Ann. Physik 5, 325 (1930). 

I. INTRODUCTION 

THIS paper is concerned with the elastic scattering 
of electrons from atomic helium in the energy 

region from 0 to 50 eV. For this problem, as in all low-

* A preliminary account of this work was given at the Pasadena 
meeting of the American Physical Society [Bull. Am. Phys. Soc. 
S, 608 (1963)]. 

f This work was supported in part by the U. S. Bureau of Naval 
Weapons, 

is a better approximation than the original classical 
approximation. By comparing columns one, two, and 
five of Table I we see that this suggestion is true. 

CONCLUSION 

At large impact energies we cannot expect the classi
cal inelastic electron-atom scattering cross sections to 
agree with experiment, for the classical theory cannot 
describe an electron-atom collision correctly. However, 
at incident electron energies of a few atomic units the 
classical description of a collision is valid and the 
classical cross sections should be as accurate as the 
Born-approximation cross sections. If the incident 
electron energy is close to the ionization or excitation 
threshold the electron-electron interaction is not the 
dominant interaction and we cannot expect either the 
classical or the Born approximations to give accurate 
cross sections. 
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energy electron-atom scattering problems, two major 
effects must be included in the formalism to give ade
quate description of the scattering. These are the 
exchange interactions between the scattering electron 
and the atomic electrons arising from the exclusion 
principle and the distortion induced in the atomic sys
tem by the presence of the scattering electron. 

Exchange effects in scattering have been studied by 
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many authors, including Morse and Allis who treated 
the cases of hydrogen and helium.1 From these investi
gations it is clear that exchange effects must be con
tained in any theory which treats electron-atom scat
tering at low energies. This may be done either by ex
plicit antisymmetrization of the total wave function for 
the system or implicitly in an eigenfunction expansion 
over a complete set of states for the system. In the 
present study, a completely antisymmetrized wave 
function is used to include exchange. 

As yet no simple procedure exists for adequately 
treating the more subtle distortion effects. There is in 
fact a sequence of interrelated effects as the electron 
moves in through the atom. These effects may be charac
terized by the magnitude of the separation distance 
between the electron and atom. For very large separa
tions, the system consists of a point charge and neutral 
atom between which there will exist a — a/r* polarization 
potential due to the dipole moment induced in the atom 
(polarizability a) by the electric field of the point 
charge.2,3 As the separation decreases, the electron is 
accelerated by the attractive polarization potential and 
although it may have started at infinity with a velocity 
far below that of the atomic electrons, it soon attains 
a velocity of similar magnitude. This leads to velocity-
dependent interactions. When the scattering electron 
penetrates the atom, correlation effects between it and 
the atomic electrons become important since the atomic 
configuration must adjust for the close proximity of this 
additional electron. 

To date, only the first of these effects has been given 
much consideration. In this case the usual procedure is 
to assume that the velocity of the incident electron 
remains substantially smaller than that of the atomic 
electrons so that the entire electronic configuration of 
the atom instantaneously readjusts for each position 
of the incident electron. From the resulting distortion, 
usually only the dipole polarization part is retained. 
This method is commonly called the "adiabatic" ap
proximation and has been applied with some success 
to hydrogen by Temkin and Lamkin.4 Their treatment 
included the Pauli principle explicitly in determining 
the polarization and the resulting formalism then in
corporates some dynamic effects. 

Another case in which the adiabatic approximation 
has been applied with greater success, although re
stricted to very low energies, is the modified effective-
range theory of O'Malley, Spruch, and Rosenberg.5 For 

1 P. M. Morse and W. P. Allis, Phys. Rev. 44, 269 (1933). 
2 We have assumed here, as is the case for helium, that the 

isolated atom possesses no intrinsic quadrupole moment. If such 
should exist as in the case of oxygen, a potential proportional to 
1/r3 would be present which would have more important long-range 
effects than the induced dipole moment. 

3 Atomic units are used throughout this paper in which h~l, 
e2 — 2, and m = §. The unit of length is the Bohr radius and that of 
energy is the rydberg (13.6 eV). 

4 A' Temkin and J. C. Lamkin, Phys. Rev. 121, 788 (1961). 
5 T. F. O'Malley, L. Spruch, and L. Rosenberg, Phys. Rev. 

Letters 5, 375 (1960); T. Math. Phys. 2, 491 (1961); Phys. Rev. 
125, 1300 (1962). 

this, the long-range — a/r4 polarization potential was 
shown to be the major interaction determining the scat
tering in the limit of zero energy. The usual effective-
range theory developed for nuclear problems was then 
modified to account for this long-range potential and 
an expansion in energy was derived for the cross sec
tion. Application of this theory to low-energy scattering 
from helium and other rare gases has been given by 
O'Malley with good results for energies up to a few 
eV.6 

The demonstration by modified effective-range theory 
of the importance of the adiabatic polarization inter
action at low energies prompted us to examine this 
approximation in more detail, and over a larger energy 
region. In particular we have included polarization 
effects in a Hartree-Fock calculation of electron scatter
ing from helium where we have found substantial im
provement in the cross sections for the energy region 
from 0 to 50 eV as compared to those of previous cal
culations. The derivation of the extended Hartree-Fock 
equation follows the procedure of Temkin and Lamkin,4 

and is discussed in Sees. I I and III . 
A further comment should be made concerning the 

close-range correlation effects mentioned above. These 
effects are necessarily neglected in the present formal
ism. To include them, one must use a more powerful 
method such as "close-coupling" which has been applied 
to hydrogen.7 However, this approach requires knowl
edge of all the eigenfunctions of the atom being treated 
in order to get just the adiabatic polarization effect and 
as such holds little promise in its present form for any 
atoms other than hydrogen as far as elastic scattering 
is concerned.8 An extension of this method wherein 
only a few of the low-lying states are kept in the eigen
function expansion and the remaining states approxi
mated by an "optical" potential has, however, been 
considered by Pu.9 

The reduction of the scattering equation to a form 
suitable for computer solution and the methods used 
to solve it are given in Sec. IV. The results obtained from 
this formalism are presented and compared with other 
calculations and with experiment in Sec. V. 

II. DERIVATION OF THE SCATTERING EQUATION 

The procedure used to obtain the equation for the 
scattering wave function follows the standard Hartree-
Fock (H-F) method. One requires that the variation of 
the integral 

/ = [v*(H-E)VdT (1) 

6 T . F. O'MaUey, Phys. Rev. 130, 1020 (1963). 
7 See for example the comprehensive review of electron-hydrogen 

scattering by P. G. Burke and K. Smith, Rev. Mod. Phys. 34, 458 
(1962). 

8 The "dose-coupling" approach has been found to be a powerful 
method for treating inelastic collisions since any particular channel 
of interest can be examined almost independently of the others. 

9 R. Pu, University of California Radiation Laboratory Rept. 
UCRL-10878, 1963 (unpublished). 



ELASTIC SCATTERING OF ELECTRONS FROM He A 1541 

be zero, where, for helium, the total Hami]toman is 
given by 

4 4 4 2 2 2 
^ - - V 1

2 - V 2
2 - V 3

2 + — + — + — , (2) 
ri r2 r3 ru rn r23 

Tij— \ti—-Tj\ , 

and the energy is 
E-EA+k2 (3) 

with EA the ground-state energy of the atom and k2 the 
energy of the scattering electron. 

The Pauli principle requires that the total wave 
function for the system be antisymmetric in the inter
change of any two electrons. To include this and adia-
batic distortion effects, the Ansatz for the total wave 
function is taken as an antisymmetric combination of 
the perturbed wave functions for the atomic orbitals 
and the scattering electron. Since the atomic configura
tion forms a singlet spin state, only one orientation of 
the scattering electron spin need be considered. Further
more, since exchange is explicitly included, the per
turbed atomic orbitals must be properly paired with 
the wave function for the scattering electron. From 
these considerations, the Ansatz is taken to be 

*(1,2,3)=(3)-1'»^«»(1>2)*,(3)S(1>2)«(3)+ 

^2>(3,l)¥ '(2)S(3,l)a(2)+^(2 )3)¥>(l)S(2,3)a(l)], (4) 

where S is the singlet spin function, 

S ( v ) = (2!)-l«[a(*)ffOV«(./)ff(*)], (5) 

a and (5 are single electron spinors with projections 
w s = + | and —J, respectively; <p is the wave function 
of the scattering electron, and \(/(n) (i,j) denotes the space 
part of the H-F wave function for the atomic orbitals, 
electrons i and j , perturbed by the field of a separated 
electron n. The functions ftn) (i,j) are assumed to be 
known, and are not varied. The Ansatz is also seen to 
be an eigenfunction of the total spin of the system. 

The atomic wave functions are determined to first 
order in the interaction with the "scattering electron." 
According to Temkin these will be of the form 10 

^->(f,i) = ^ioo(0^ioo(i) 
+tioo(i)x(j; n)+^m(j)x(i; n), (6) 

where \̂ ioo denotes the unperturbed H-F wave function 
for the helium ground state and X(j; n) is the first-order 
perturbed wave function for the state of atomic elec
tron j acted on by the field of separated electron n. 

For future reference, the unperturbed wave functions 
satisfy the ordinary H-F equation 

[ - Vx ' -Vrr f 7 . ( n ) - e>10o(ri) = 0, (7) 

where € is the H-F single electron energy eigenvalue and 
Vc is the self consistent electron interaction given by 

f 2 

Ve(n)= / |*ioo(r2)|*— dr2. (8) 
J ru 

10 A. Temkin, Phys. Rev. 107, 1004 (1957). 

We do not use the rather complicated H-F pertur
bation theory, but instead assume that the perturbed 
function satisfy the equation11 

r _ Vi2 + 7 , ( r < ) _ € |x(r<; r«) 

-Mrn)~V(riytn)^ioQ(ri)f (9) 

where 

A*(r»)= l\fioo(Ti)\*0(Ti,rn)dTi (10) 

is the first-order perturbation energy and V(ti,tn) is the 
perturbation potential acting on electron i due to elec
tron n. The terms deleted from the H-F perturbation 
theory are Coulomb and exchange integrals between 
the perturbed and unperturbed wave functions and 
neglect of them should be justified since they are smaller 
than the terms retained. 

The perturbation potentials V are the corresponding 
two-body parts of the total interaction between the 
scattering electron and the atom, 

4 2 2 
7<„(1,2,3)= + — + — . 

?*3 ru r2s 

These may be expanded in the Legendre polynomial 
series 

2 oo r<
1 

•0(r<,r„) = — = 2 £ Pi(cosOin), (11) 
fin z=° r > m 

where r< is the smaller and r> the larger of n and rn. 
A common assumption is to consider the atomic orbitals 
perturbed only where the scattering electron is "out
side" of the atomic electrons (rw>n), the perturbation 
vanishing otherwise.12 For the case being treated here, 
we have used a slightly different approach wherein 
some contribution from the region where the scattering 
electron is inside of the atomic electrons is retained as 
explained in the following. 

For helium, we have not solved for the H-F perturbed 
wave functions since we are considering only the direct 
polarization potential effects at present. Instead, we 
have used the polarization potential given by Bethe13 

which he derived using the simple exp(—zr) variational 
wave functions for the atomic orbitals. Bethe's con
siderations were actually directed toward finding the 
second order correction to the energy of the atom for 
one electron in a highly excited state. In this, then, he 
also included the region where the outer electron was 
inside of the Is electron since the probability of such 
was not negligible. By doing this, he obtained different 

u The complete form of the perturbed wave function equation 
given by Temkin in Ref. 10 is slightly in error. The proper form 
is given in its entirety by J. Callaway, Phys. Rev. 106, 868 (1957). 
The truncated version given here is the same in either case. 

12 A. Temkin, Phys. Rev. 116, 358 (1959). 
13 H. A. Bethe, Handbuch der Physik (Edwards Brothers, Inc., 

Ann Arbor, Michigan, 1943), Vol. 24, Pt. 1, pp. 339 ff. 
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perturbed wave functions for the "inner" and "outer" 
regions which then had to be matched at the boundary. 

Since Bethe assumed that the Is wave function is 
simply an exponential instead of the actual H-F wave 
function, a matching problem arises. This is overcome 
by noting that it is mainly the asymptotic form of the 
polarization potential which is important,12 so that as 
long as we match this to the proper —a/rA form, reason
able results should be obtained in the adiabatic approxi
mation. This matching is discussed further in Sec. I I I . 
The choice of Bethe's polarization potential over that 
given by Callaway11 (or Temkin12 which is the same) 
was motivated by the fact that Bethe's varies like r2 

at the origin while Callaway's goes like r and semi-
classical considerations indicate that a r2 dependency is 
appropriate. 

The scattering equation is then obtained by sub
stituting (2), (3), and (4) into (1), integrating over 
spin and carrying out the variation on <p*. This results 
in the equation 

X [ ^ ( « ( l , 2 ) ^ ( 3 ) - ^ W ( 3 , l ) ^ ( 2 ) ] ( / r i d r 2 = 0 (12) 

for the scattering electron wave function <p, where, in 
obtaining this, we have used the fact that the perturbed 
atomic wave functions in the exchange part are identical 
as far as the integral in (12) is concerned. 

Equation (12) sometimes appears in a form in which 
the unperturbed atomic function appears on the left in 
the integrand. This is suggested, but is by no means 
required by the definition of the full scattering wave 
function as the projection of total wave function on the 
unperturbed target atom wave function.14 That pro
cedure may have some justification if one can choose an 
approximate wave function for the system which is 
extremely close to the exact wave function, so that the 
Schrodinger equation alone, 

( # - £ ) ¥ = 0 (13) 

is approximately satisfied. One may then multiply by 
anything on the left and integrate out the undesired 
coordinates without appreciably changing the validity 
of the results. This is just the philosophy behind the 
"close-coupling" approach to scattering problems. 

III. REDUCTION OF THE SCATTERING EQUATION 

The adiabatic-exchange approximation for the scat
tering equation is obtained by keeping the perturbed 
atomic wave functions only in the direct terms while 
neglecting them completely in the exchange terms in 
(12). Thus, all terms in (6) are retained for the first 
integral in (12) while only the first term of (6) is retained 
in the second integral. In addition, any dynamic terms 
of the form Vw

2X(r t;rn) are neglected as are all third-
and higher order terms. 

14 A. Temkin, J. Math. Phys. 2, 336 (1961). 

Making these substitutions and using (7) and (9) to 
reduce the resulting terms gives the adiabatic-exchange 
equationJor <p as 

-V3
2 +2Vc(r*)+2Vp(r9)-k* <p(*i) 

= {e—k2)\^i^{r2)<p(t2)dT2 

+ I ^ioo*(r2)— <p(r2)dr2 kioo(rs), (14) 
J r2Z J 

where Vp is the polarization potential and given by 

Vp(rz)= /"^ioo*(ri)V(ri,rs)X(n; u)dru (15) 

in general. For our case, only the dipole part of V was 
retained [the / = 1 term of (11)] and the corresponding 
polarization potential was given by Bethe13 as 

2Vp(r) = -
(zry -H l+2zr+6(zr)2 

20 4 -i 2 ' 
+—{zry+-(zrY —e -*"{ \+arY 

3 3- J 3 
, (16) 

where z is chosen so that the asymptotic form of (16) 
approaches 

2Vp(r) -> -a/r4, for r-» oo , (16a) 

which gives 
*= ( 9 » i / 4 (17) 

with a the experimental polarizability. 
This equation is equivalent to the adiabatic-exchange 

equation solved by Temkin and Lamkin4 and hence the 
conflicting viewpoints discussed at the end of the pre
vious section only give differences in the form of the 
polarization exchange terms which are neglected here. 

The neglect of the polarization exchange terms in 
(14) corresponds to actually neglecting some first-order 
terms while the second-order polarization potential is 
retained. The justification for this approximation lies 
in the fact that all of the exchange terms neglected will 
contain factors which fall off exponentially with increas
ing r% since they are always multiplied by a bound-state 
wave function. The polarization potential, on the other 
hand, falls off only as rf* and thus, although of higher 
order in a formal sense than neglected terms, is of 
sufficiently greater range to be of more importance than 
the exponentially decaying terms. This is readily seen 
to be true for hydrogen when one observes the changes 
in the phase shifts as the various orders of approximation 
were included in the work of Temkin and Lamkin. A 
similar situation is believed to hold for helium. A more 
elaborate analysis including most of the deleted terms 
will be considered in subsequent work. 
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The solution of (14) is achieved by first expanding 
<p in the spherical harmonic series 

* ( r ) « i - T i * i ( ' ) I Y ( 0 ) (18) 

substituting this into (14), multiplying by r3Fj0*(S22) 
and integrating over dQ,% to get an integrodifferential 
equation for the m(r). This equation is then solved for 
the ui subject to the boundary conditions 

ui(r) • Km for 0, 

Ui(r)—>constXsin(kr~lir/2+r]i), for r —» <*> ? (19) 

where rji is the resulting phase shift. The scattering 
cross sections are then obtained from the phase shifts 
by the standard partial-wave expansions. 

IV. SOLUTION OF THE SCATTERING EQUATION 

The radial equation obtained after intergrating out 
the angular dependence in (14) is adapted for computer 
solution by writing it in the form 

r/(/+1) 4 -| 
j(r«) = | : +2Vc(rz) + 2Vp(rz)~P «,(r,) 

L f8* r% 

21+1 
-Rufa) {Bl+iAi(e~k>)8l,oW+i 

+rfl / Ru{r2)ui{r2)r2
l+1dr2 

Jo 

-nwf RiM)uM)ri-lfo^\, (20) 

where A\ and Bt are two constants given by 

Ai= Ru(r2)ui(r2W
+ldr2, 

/»0O 
(21) 

Bi= / Ru(r2)ui(r2)r2~
ldr2, • 

and Ris is the normalized (and real) radial part of the 
unperturbed H-F Is wave function for the helium atom, 
related to the ^i0o by ^ioo(r) = JMr)F0°(G). 

The H-F wave functions used here were those given in 
analytical form by Roothan, Sachs, and Weiss for which 
the corresponding energy eigenvalue is €= — 1.835912 
Ry.15 The value used for the polarizability of helium, 
a, was that given by Wikner and Das16 as 1.376 a0

3. 
Equation (20) is thus in a form suitable for iteration 

from the origin out once starting values for A0 and Bi 
are determined. For this, the differential equation was 
iterated by Milne's method17 with the integrals done 

15 C. C. J. Roothan, L. M. Sachs, and A. W. Weiss, Rev. Mod. 
Phys. 32, 186 (1960). 

16 E. G. Wikner and T. P. Das, Phys. Rev. 107, 497 (1957). 
17 W. E. Milne, Numerical Calculus (Princeton University Press, 

Princeton, New Jersey, 1949), p. 140. 

by Simpson's rule. To begin the iteration, Milne's 
method necessitated knowledge of the first four points 
and these were obtained by expanding m in a power 
series, substituting this into (20) and solving for the 
first few coefficients. In addition, the required starting 
values for A0 and Bi were found by solving (20) with 
the last part set equal to zero (the no-exchange approxi
mation). The resulting wave functions were then used 
in (21) to estimate the constants AQ and Bi. 

Having a set of starting values, the entire integro
differential equation was iterated through a self-
consistent field procedure. For this, the iteration was 
carried out to the point where new values of the con
stants A i and Bi could be obtained with sufficient ac
curacy (the exponential decay of the atomic orbitals 
causes the integrands to vanish to a good approxima
tion for r> 15). The new value of A i was then compared 
with the starting value and if they disagreed to some 
present accuracy, the new values of A i and Bi were used 
for starters and the iteration repeated. This procedure 
was repeated until an essentially self-consistent solution 
was obtained wherein the constant A i changed by less 
than 0.1% from iteration to iteration. At this point, the 
solution was assumed self-consistant and the iteration 
carried out to r= 25. The constant Bi was not explicitly 
checked in this since experience showed it to converge 
more rapidly, changing by less than 0.01% when the 
change in Ai had decreased to 0.1%. 

The mesh size used in this iteration was varied from 
0.01 to 0.1 in the following pattern; Ar=0.01 for 
0<r<0.15, Ar=0.05 for 0.15<r<2.0 and Ar=0.1 for 
2.0<r<25. This was done to allow accurate starting 
values for the iteration to be obtained with only the 
first few terms in the power-series expansion of ui and 
at the same time get good accuracy from Milne's method 
over the region where the nuclear Coulomb potential 
has a very large derivative. However, varying the mesh 
in this way led to difficulties in using Simpson's rule 
for the integrals when passing the points where the mesh 
was changed. These difficulties were surmounted by 
using the trapezoidal rule for the integrals for the 
first increment in the region of a changed mesh size. 

Approximate phase shifts were extracted from the 
iterated u% around r=jR=25 by matching these to the 
spherical Bessel functions in the form 

Ui(r) = Cji(kr)~Dn.i(kr) (22) 

from which the phase shifts were then found from 

i7i(JR) = tan-1(D/C) (23) 

mod 7r, where rji(R) indicates the phase shift induced by 
the interaction between the origin and the point r= R. 
To determine the actual phase shift TJI, both the proper 
multiple of T to be added to (23) and the effect of ter
minating the iteration at some finite R were examined 
as follows. 

The proper multiple of T was determined from 
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FIG. 1. s- and ^>-wave phase shifts for electrons scattered from 
helium. Dashed curves are the results of Morse and Allis where 
distortion effects were neglected. 

Swan's18 conjecture on Levinson's theorem as discussed 
by Temkin.14 For this since there are no bound states 
for the He" ion with two electrons in the Is2 ground 
state, only the effects of the Pauli principle act to make 
the s-wave phase shift equal to T at k = 0 and all higher 
partial-wave phase shifts approach zero. 

The effects of terminating the iteration at J R = 2 5 
was to truncate the polarization interaction. This has 
most serious effects upon the very low-energy phase 
shifts and corrections to these were thus a necessity. 

The corrections were obtained from the formalism 
developed by Levy and Keller19 for pure potential 
scattering. (This is applicable here since only the polar
ization potential exists in the region of interest, 
25 < r < oo.) From their work, integration of the expres-

TABLE I. Partial-wave phase shifts in radians. 

Energy 
k 

Oa 
0.01 
0.05 
0.10 
0.1917 
0.25 
0.2712 
0.3835 
0.4287 
0.50 
0.6063 
0.75 
0.8575 
1.00 
1.25 
1.50 
1.75 
2.00 

eV 

0 
0.00136 
0.034 
0.136 
0.50 
0.85 
1.00 
2.00 
2.50 
3.40 
5.00 
7.65 

10.00 
13.60 
21.25 
30.60 
41.65 
54.40 

s wave 

1.132 
3.13016 
3.0822 
3.0186 
2.8972 
2.8189 
2.7904 
2.6417 
2.5832 
2.4934 
2.3652 
2.2050 
2.0953 
1.9632 
1.7651 
1.6034 
1.4704 
1.3601 

p wave 

0.000029 
0.00080 
0.0033 
0.0129 
0.0228 
0.0272 
0.0576 
0.0730 
0.1006 
0.1472 
0.2142 
0.2623 
0.3176 
0.3862 
0.4235 
0.4405 
0.4460 

d wave 

0.000004 
0.00010 
0.00044 
0.0016 
0.0027 
0.0031 
0.0063 
0.0080 
0.0111 
0.0168 
0.0267 
0.0356 
0.0491 
0.0753 
0.1017 
0.1256 
0.1460 

a The k —0 entry is the scattering length computed from the k =0.01 and 
0.05 5-wave phase shifts. The numerical accuracy of the quoted results are 
to about 2 in the last decimal place. 

18 P. Swan, Proc. Roy. Soc. (London) A228, 10 (1955). 
19 B. R. Levy and J. B. Keller, J. Math. Phys. 4, 54 (1963). 

sion for the phase shift under a pure central potential 
V(r) yields the correction formula 

ta,nr)i~t&nr]i(R) 

-k V(r)Ql(kr)-ni(kr)ta,nrii(r)22r2dr9 (24) 
J R 

where the appropriate potential here is the asymptotic 
form of the polarization potential given in (16a). In 
addition, the first-order approximation was made in 
replacing rji(r) inside the integral by the constant rn(R). 
This approximation is quite good here since only small 
corrections are obtained for R as large as 25. 

V. RESULTS AND DISCUSSION 

The scattering phase shifts for the s, p} and d waves 
have been computed and corrected as outlined above 
and the results are given in Table I. The s- and p-w&ve 
phase shifts are also plotted in Fig. 1 for comparison 
with those computed by Morse and Allis with the dis
tortion effects neglected. The effects of applying the 
correction formula (24) to the approximate phase shifts 
found in (23) were most important for energies below 
2 eV and for the p- and d-wave phase shifts. Only a very 
small effect was noted in the s-wave phase shifts and 
primarily in the value of the scattering length obtained 
from them. We shall first discuss this scattering length. 

The scattering length given under the & = 0 entry 
(a) in Table I was obtained from the £ = 0.01 and 0.05 
j-wave phase shifts using the first two terms of the 
modified effective range theory expansion5 

tam/o- ~Ak- (ira/3)k2~ (4aA/3)k* In £ , (25) 

where A is the scattering length. (The magnitude of 
the remaining terms are assumed negligible compared to 
those retained.) This value of 1.132 a0 for the scattering 
length lies within the range of values from 1.19 to 1.06 
do as found by various experimenters and reviewed by 
O'Malley.6 Our uncorrected phase shifts gave a scatter
ing length of 1.178 a0. 

The lower value of the corrected scattering length is 
more in accord with the recent experimental data. 
However, as evidenced the wide range of experimental 
values, there is considerable discrepancy in the experi
mental scattering length for helium. This is in part due 
to the fact that the experimental values are obtained 
from measurements of the cross sections for a teneous 
gas of atoms rather than for an isolated atom. Because 
of this, there is also a correction necessary in the ex
perimental values to account for the finite separation 
between atoms of the gas which leads to an effective 
screening of the polarization interaction at some finite 
distance. Further comparisons with experimental scat
tering lengths will thus be deferred to a later date when 
better experimental methods are devised to overcome 
the proximity problem. 

Comparison of the phase shifts in Fig. 1 shows that 
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inclusion of some distortion has two major effects 
upon the phases. These are: a change in slope near k — 0 
for both the s and p waves; and, a larger over-all change 
in magnitude for the p wave as compared to the s-wave 
phase shift. These effects are important, first, in giving 
the opposite slope to the total cross section at very low 
energies (Fig. 3) and, secondly, producing a high back
ward asymmetry in the differential cross sections at low 
energies (Fig. 2). These changes then result in better 
correspondence with other data at low energies as dis
cussed in the following. 

The differential scattering cross sections computed 
from the phase shifts in Table I for a selection of the 
energies considered are shown in Fig. 2. These show a 
large backward asymmetry for low energies which 
reverses to a forward asymmetry as the energy increases. 
The shape at low energies is not in accordance with the 
experimental data of Ramsauer and Kollath20 or Bullard 
and Massey.21 For higher energies the shape matches 
these quite closely. However, at low energies, the modi
fied effective-range theory predicts a shape given by6 

da/dQ=A2+4aAksm(d/2)+(SaA2/3)knnk+- • • , (26) 

which reaches a maximum for 6~ir. I t thus appears 
that a high backward asymmetry should be observed 
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FIG 2. Differential scattering cross sections for electrons on 
helium by the adiabatic-exchange approximation. 

FIG. 3. Total scattering cross sections for electrons on helium. 
The adiabatic-exchange approximation is compared with the 
computations of Morse and Allis (dashed curve) and experimental 
data by Ramsauer and Kollath (circles) and Normand (triangles). 

and further considerations will be deferred to a later 
date when the data of Golden and Bandel22 becomes 
available. 

The total scattering cross sections have been com
puted for all of the energies considered and are plotted 
in Fig. 3. These are compared with the cross sections 
computed by Morse and Allis1 and those measured by 
Ramsauer and Kollath20 and by Normand.23 The com
parison with experimental data is seen to be good in 
both cases and especially with the Ramsauer-Kollath 
data at low energies. For the medium energy region 
(10 to 30 eV), the adiabatic-exchange cross sections 
exceed both experimental data and we believe that this 
is due in part to the dynamic effects neglected here. 

The very low-energy cross sections computed by the 
adiabatic-exchange approximation are compared with 
the values predicted by the modified effective-range 
theory (ERT) in Table II . The effective range theory 
values were computed from the expansion5'6 

a--47r[^ . 2+(27r«^/3)^+(8a^ 2 /3)^ In k 
+ l(SaA2/6) ln(a/l6)+Ahpo 
+ (2*4/3) (A2-a)al^~ 227rV/225> 2+ • • • ] , (27) 

where only the largest terms in the coefficient of the 

TABLE II. Comparison of electron-helium total scattering cross 
sections by the adiabatic-exchange approximation and modified 
effective-range theory. 

20 C. Ramsauer and R. Kollath, Ann. Physik 3, 536 (1929): 12, 
529 (1932). 

21 F. C. Bullard and H. S. W. Massey, Proc. Roy. Soc. (London) 
A133, 637 (1931). 

E(eV) 

0.00136 
0.034 
0.136 
0.50 
0.85 
1.00 
2.00 

Adiabatic-exchange 

16.425 
17.749 
18.958 
20.201 
20.541 
20.602 
20.499 

Modified ERT 

16.483 
17.632 
18.529 
19.220 
19.276 
19.253 
18.891 

22 D. E. Golden and H. W. Bandel, Bull. Am. Phys. Soc. 9, 90 
(1964). 

23 C. E. Normand, Phys. Rev. 35, 1217 (1930). 



A 1546 R . W . L A B A H N A N D J . C A L L A W A Y 

PACK 

1 PACK 

' BOWE ' 

PHELPS AND 

i r """" -

FROST 

^ McCLURE ^ 

AND PHELPS 

i i i i : oi— 1 1 1 1 1 
0 2 4 6 8 10 

E(eV) 

FIG. 4. Momentum transfer cross sections for electrons on 
helium. The adiabatic-exchange approximation is compared with 
recent microwave drift velocity measurements. 

k2 term have been retained and rpa is the modified ''effec
tive range." The value used for rpo in (27) was obtained 
here by extrapolation from the k2 coefficient used by 
O'Malley6 in matching the Ramsauer-Kollath data. 
This value is rpo=3.7 aQ and closely corresponds to the 
point where the short-range potential interaction in 
(14) vanishes. Our value of 1.132 a0 was used for the 
scattering length. 

The comparison with modified effective-range theory 
is seen to be good in general with the main exception 
being a steeper slope for our data. It is possible this 
discrepancy would be reduced if the polarization-ex
change terms neglected on the right side of (14) were 
retained. 

We finally show in Fig. 4 the cross sections for mo
mentum transfer computed from the phases of Table I 

and compared with various other data. For these, more 
recent measurements are available through microwave 
drift velocity experiments but the results differ widely 
in absolute magnitude. These results are the values 
labeled Bowe,24 Pack and Phelps,25 Pack, Phelps, and 
Frost,26 and McClure27 with the latter being the most 
recent. The comparison is seen to be quite good with 
earlier experimental data but exceeds the most recent 
data. 

The comparison of the adiabatic-exchange approxi
mation with experimental data is seen to be superior at 
low energies to the previous calculations which neglected 
distortion effects. However, the present calculations 
are not an optimum fit to the experimental data over 
the entire 0- to 50-eV energy range. An attempt will 
be made at a later date to ascertain whether inclusion 
of exchange-polarization effects improves the agreement 
with experiment. 
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